metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(*N*,*N*-diethylcarbamato)titanium(IV)

Nicholas A. Straessler,^a M. Tyler Caudle^b and Thomas L. Grov^c*

^aATK Launch Systems, Brigham City, UT 84302, USA, ^bBASF Catalysts LLC, Iselin, NJ 08830, USA, and ^cDepartment of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA Correspondence e-mail: tgroy@asu.edu

Received 18 October 2007; accepted 9 November 2007

Key indicators: single-crystal X-ray study; T = 263 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.044; wR factor = 0.114; data-to-parameter ratio = 15.2.

The mononuclear title compound, $[Ti(C_5H_{10}NO_2)_4]$, is a rare example of an eight-coordinate Ti^{IV} compound in which all donor atoms are O atoms. The coordination geometry around Ti^{IV} is pseudo-dodecahedral and the O–C–O angles of the carbamate ligands are slightly compressed [range 115.3 (2)–116.7 (2)°], apparently on account of the high coordination number. One ethyl group is disordered over two positions; the site occupancy factors are 0.64 and 0.36.

Related literature

The *pseudo*-dodecahedral description of the coordination geometry is discussed in: Dell'Amico *et al.* (2000). For related structures, see: Chisholm & Extine (1977*b*); Dell'Amico *et al.* (2003); McCowan *et al.* (2004). Related synthesis details are given in: Calderazzo *et al.* (1991); Chisholm & Extine (1977*a*).

Experimental

Crystal data

 $\begin{bmatrix} Ti(C_3H_{10}NO_2)_4 \end{bmatrix} \\ M_r = 512.46 \\ Monoclinic, P2_1/n \\ a = 13.9906 (9) Å \\ b = 11.7183 (8) Å \\ c = 17.7483 (12) Å \\ \beta = 112.494 (1)^\circ \end{bmatrix}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\rm min} = 0.922, T_{\rm max} = 0.950$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.114$ S = 0.944751 reflections 313 parameters $V = 2688.4 (3) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.37 \text{ mm}^{-1}$ T = 263 (2) K $0.23 \times 0.18 \times 0.14 \text{ mm}$

21432 measured reflections 4751 independent reflections 3280 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.052$

4 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.21$ e Å⁻³ $\Delta \rho_{min} = -0.25$ e Å⁻³

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Science Foundation for its contribution toward the purchase of the single-crystal instrumentation used in this study through award No. CHE-9808440.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2252).

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SADABS (Version 2.03), SAINT (Version 6.28A) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- Calderazzo, F., Ianelli, S., Pampaloni, G., Pelizzi, G. & Sperrle, M. (1991). J. Chem. Soc. Dalton Trans. pp. 693–698.
- Chisholm, M. H. & Extine, M. W. (1977a). J. Am. Chem. Soc. 99, 782-792.
- Chisholm, M. H. & Extine, M. W. (1977b). J. Am. Chem. Soc. 99, 792-802.
- Dell'Amico, D. B., Calderazzo, F., Ianelli, S., Labella, L., Marchetti, F. & Pelizzi, G. (2000). J. Chem. Soc. Dalton Trans. pp. 4339–4342.
- Dell'Amico, D. B., Calderazzo, F., Labella, L., Marchetti, F. & Pampaloni, G. (2003). Chem. Rev. 103, 3857–3897.
- McCowan, C. S., Buss, C. E., Young, V. G. Jr, McDonnell, R. L. & Caudle, M. T. (2004). Acta Cryst. E60, m285–m287.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2008). E64, m48 [doi:10.1107/S160053680705742X]

Tetrakis(*N*,*N*-diethylcarbamato)titanium(IV)

N. A. Straessler, M. T. Caudle and T. L. Groy

Comment

Preparation of the title compound has been previously reported *via* direct reaction of $Ti(NEt_2)_4$ with CO₂ (Chisholm & Extine, 1977*a*), and by a one-pot approach similar to that described herein but using a different solvent system (Calderazzo *et al.*, 1991). In neither case was the compound structurally established by X-ray crystallography, although it was suggested to be mononuclear.

The coordination environment around the Ti^{IV} atom in the title compound consists of eight O atoms derived from the four bidentate carbamato ligands. The Ti—O bond distances are all similar, ranging between 2.0530 (15) and 2.1087 (16) Å, while the O—C—O angles of the carbamate ligands range from 115.3 (2) to 116.7 (2)°. These angles are considerably smaller than O—C—O angles in complexes having terminal η^1 or $\mu_{1,3}$ -bridging carbamato ligands, which tend to be greater than 120°, and they are small even when compared to other bidentate carbamato ligands (Dell'Amico *et al.*, 2003; McCowan *et al.*, 2004). The compressed O—C—O angles in the title compound are attributed in part to the high coordination number about the Ti^{IV} center, which has the effect of forcing the O atoms closer to one another.

Eight-coordinate Ti^{IV} compounds are rare, particularly in an environment consisting solely of O donor ligands (Dell'Amico *et al.*, 2000). The title compound has a similar core structure to tetrakis(N,N-di-isopropylcarbamato)titanium(IV) (Dell'Amico *et al.*, 2000), which together with the six-coordinate distorted octahedral compound bis(dimethylamido)bis(N,N-dimethylcarbamato)titanium(IV) (Chisholm & Extine, 1977*b*) are the only other crystallographically characterized mononuclear carbamato complexes of Ti^{IV}.

Experimental

While stirring under an atmosphere of N_2 , 1.00 ml (9.12 mmol) of TiCl₄ was added to approximately 70 ml of anhydrous THF in a Schlenk flask. A yellow solid formed that dissolved within several minutes. To the resulting bright yellow solution was added 7.50 ml (72.50 mmol) of anhydrous diethylamine. The mixture turned dark blue, almost black, in color. After ten minutes the flask was evacuated of all N_2 and charged with 1 atm of anhydrous CO₂ gas which caused the reaction mixture to turn yellow/orange and precipitate solid. After stirring overnight, solid white diethylammonium chloride was removed by filtration under N_2 . Approximately 30 ml freshly distilled *n*-hexane was added to the clear light yellow filtrate and the volume was reduced by slow evaporation under a stream of N_2 . This gave 2.85 g (61%) of pale yellow crystals suitable for X-ray analysis.

Refinement

H atoms were positioned geometrically and allowed to ride with C—H = 0.96 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl groups and C—H = 0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for the methylene groups. One ethyl group on the diethylcarbamate ligand

containing N1A is disordered. Atoms C1D–C1E represent the majority component (site occupancy factor 0.639 (4)) and C1D'–C1E' represent the minority component (site occupancy factor 0.361 (4)). The components were refined with N––C and C––C bond lengths restrained to 1.46 (1) and 1.48 (1) Å, respectively, and with anisotropic displacement parameters constrained to be identical for the atom pairs C1D/C1D' and C1E/C1E'. Data were collected at 263 K because the crystals undergo what is believed to be a destructive phase transformation somewhere in the range 173–243 K.

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids shown at the 25% probability level. H atoms are omitted. Disorder of one ethyl group bonded to N1A is shown using C1D–C1E as the major component and C1D'–C1E' as the minor component.

Tetrakis(N,N-diethylcarbamato)titanium(IV)

Crystal data	
[Ti(C ₅ H ₁₀ NO ₂) ₄]	$F_{000} = 1096$
$M_r = 512.46$	$D_{\rm x} = 1.266 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 7268 reflections
<i>a</i> = 13.9906 (9) Å	$\theta = 2.4 - 25.3^{\circ}$
<i>b</i> = 11.7183 (8) Å	$\mu = 0.37 \text{ mm}^{-1}$
c = 17.7483 (12) Å	T = 263 (2) K
$\beta = 112.494 \ (1)^{\circ}$	Block, light-yellow
$V = 2688.4 (3) \text{ Å}^3$	$0.23\times0.18\times0.14~mm$
Z = 4	
Data collection	

Bruker SMART APEX CCD diffractometer	4751 independent reflections
Radiation source: fine-focus sealed tube	3280 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.052$
T = 263(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scan	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -16 \rightarrow 16$
$T_{\min} = 0.922, \ T_{\max} = 0.950$	$k = -13 \rightarrow 13$

21432 measured reflections	$l = -21 \rightarrow 21$
----------------------------	--------------------------

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.062P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Ti1	0.53057 (3)	0.40515 (3)	0.75825 (2)	0.04645 (15)	
C1A	0.70112 (19)	0.4099 (2)	0.75016 (15)	0.0550 (6)	
C1B	0.8487 (2)	0.5285 (2)	0.7645 (2)	0.0790 (9)	
H1B1	0.7999	0.5833	0.7294	0.095*	
H1B2	0.9061	0.5228	0.7468	0.095*	
C1C	0.8880 (2)	0.5717 (3)	0.8500 (2)	0.0964 (11)	
H1C1	0.8315	0.5789	0.8677	0.145*	
H1C2	0.9198	0.6450	0.8524	0.145*	
H1C3	0.9381	0.5192	0.8849	0.145*	
C1D	0.8506 (4)	0.3100 (4)	0.7419 (3)	0.0744 (17)	0.639 (4)
H1D1	0.8011	0.2484	0.7214	0.089*	0.639 (4)
H1D2	0.8828	0.3242	0.7031	0.089*	0.639 (4)
C1E	0.9301 (5)	0.2802 (5)	0.8232 (4)	0.130 (2)	0.639 (4)
H1E1	0.9822	0.3386	0.8402	0.195*	0.639 (4)
H1E2	0.9615	0.2086	0.8197	0.195*	0.639 (4)
H1E3	0.8980	0.2742	0.8621	0.195*	0.639 (4)

C1D'	0.8672 (7)	0.3171 (8)	0.7944 (6)	0.0744 (17)	0.361 (4)
H1DA	0.9128	0.3364	0.8496	0.089*	0.361 (4)
H1DB	0.8264	0.2510	0.7961	0.089*	0.361 (4)
C1E'	0.9272 (10)	0.2938 (9)	0.7440 (7)	0.130 (2)	0.361 (4)
H1EA	0.9733	0.2310	0.7669	0.195*	0.361 (4)
H1EB	0.9665	0.3602	0.7425	0.195*	0.361 (4)
H1EC	0.8809	0.2748	0.6896	0.195*	0.361 (4)
N1A	0.79773 (16)	0.41651 (17)	0.75455 (16)	0.0756 (7)	
O1A	0.65588 (12)	0.31632 (13)	0.75096 (10)	0.0585 (4)	
O1B	0.64677 (11)	0.50028 (13)	0.74517 (10)	0.0549 (4)	
C2A	0.5985 (2)	0.4936 (2)	0.89342 (16)	0.0617 (7)	
C2B	0.6239 (3)	0.6631 (3)	0.97834 (19)	0.0927 (10)	
H2B1	0.6057	0.7042	0.9273	0.111*	
H2B2	0.6853	0.6981	1.0181	0.111*	
C2C	0.5377 (3)	0.6704 (3)	1.0072 (2)	0.1165 (13)	
H2C1	0.4762	0.6390	0.9666	0.175*	
H2C2	0.5259	0.7489	1.0166	0.175*	
H2C3	0.5553	0.6282	1.0570	0.175*	
C2D	0.7143 (3)	0.4758 (3)	1.03593 (18)	0.1000 (11)	
H2D1	0.6949	0.3960	1.0270	0.120*	
H2D2	0.7048	0.5002	1.0848	0.120*	
C2E	0.8246 (3)	0.4874 (5)	1.0491 (3)	0.171 (2)	
H2E1	0.8347	0.4634	1.0009	0.257*	
H2E2	0.8656	0.4407	1.0943	0.257*	
H2E3	0.8453	0.5658	1.0605	0.257*	
N2A	0.64547 (18)	0.5425 (2)	0.96643 (13)	0.0782 (7)	
O2A	0.61867 (13)	0.39039 (15)	0.88078 (10)	0.0660 (5)	
O2B	0.53366 (13)	0.54604 (14)	0.83306 (10)	0.0587 (4)	
C3A	0.4128 (2)	0.2649 (2)	0.77832 (14)	0.0554 (6)	
C3B	0.2466 (2)	0.2274 (3)	0.78633 (19)	0.0814 (9)	
H3B1	0.2532	0.3053	0.8062	0.098*	
H3B2	0.2271	0.1799	0.8229	0.098*	
C3C	0.1656 (3)	0.2221 (3)	0.7042 (2)	0.1197 (13)	
H3C1	0.1867	0.2653	0.6673	0.180*	
H3C2	0.1026	0.2533	0.7050	0.180*	
H3C3	0.1545	0.1440	0.6865	0.180*	
C3D	0.3691 (2)	0.0673 (2)	0.79305 (19)	0.0792 (9)	
H3D1	0.4157	0.0511	0.7656	0.095*	
H3D2	0.3056	0.0252	0.7652	0.095*	
C3F	0.4174 (3)	0.0266 (3)	0.8796 (2)	0.1360 (16)	
H3F1	0.4800	0.0684	0.9077	0.204*	
H3F2	0.4330	-0.0532	0.8803	0.204*	
H3F3	0.3701	0.0386	0.9063	0.204*	
N3A	0.34594 (17)	0.18900 (18)	0.78668 (13)	0.0661 (6)	
O3A	0.49815 (13)	0.23417 (13)	0.77522 (10)	0.0591 (4)	
O3B	0.39348 (12)	0.37213 (14)	0.77267 (10)	0.0561 (4)	
C4A	0.42082 (17)	0.4551 (2)	0.61816 (14)	0.0500 (6)	
C4B	0.3207 (2)	0.5963 (2)	0.51902 (16)	0.0681 (7)	
H4B1	0.3264	0.6367	0.5682	0.082*	

0.2478	0.5909	0.4846	0.082*
0.3324 (3)	0.3942 (3)	0.47780 (17)	0.0915 (10)
0.3785	0.3293	0.4966	0.110*
0.3398	0.4244	0.4294	0.110*
0.3734 (3)	0.6632 (3)	0.4759 (2)	0.1295 (15)
0.4431	0.6791	0.5124	0.194*
0.3371	0.7337	0.4572	0.194*
0.3744	0.6204	0.4301	0.194*
0.2238 (3)	0.3556 (4)	0.4564 (3)	0.1613 (19)
0.2174	0.3206	0.5032	0.242*
0.2058	0.3013	0.4127	0.242*
0.1781	0.4200	0.4397	0.242*
0.36206 (16)	0.48149 (18)	0.54101 (12)	0.0624 (6)
0.46113 (12)	0.35681 (14)	0.63830 (9)	0.0567 (4)
0.43958 (11)	0.52675 (12)	0.67580 (9)	0.0499 (4)
	0.2478 0.3324 (3) 0.3785 0.3398 0.3734 (3) 0.4431 0.3371 0.3744 0.2238 (3) 0.2174 0.2058 0.1781 0.36206 (16) 0.46113 (12) 0.43958 (11)	0.24780.59090.3324 (3)0.3942 (3)0.37850.32930.33980.42440.3734 (3)0.6632 (3)0.44310.67910.33710.73370.37440.62040.2238 (3)0.3556 (4)0.21740.32060.20580.30130.17810.42000.36206 (16)0.48149 (18)0.46113 (12)0.35681 (14)0.43958 (11)0.52675 (12)	0.24780.59090.48460.3324 (3)0.3942 (3)0.47780 (17)0.37850.32930.49660.33980.42440.42940.3734 (3)0.6632 (3)0.4759 (2)0.44310.67910.51240.33710.73370.45720.37440.62040.43010.2238 (3)0.3556 (4)0.4564 (3)0.21740.32060.50320.20580.30130.41270.17810.42000.43970.36206 (16)0.48149 (18)0.54101 (12)0.46113 (12)0.35681 (14)0.63830 (9)0.43958 (11)0.52675 (12)0.67580 (9)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ti1	0.0451 (3)	0.0418 (3)	0.0482 (3)	0.00093 (18)	0.01313 (19)	-0.00154 (18)
C1A	0.0531 (15)	0.0437 (14)	0.0666 (17)	0.0018 (12)	0.0210 (12)	0.0013 (12)
C1B	0.0607 (18)	0.0499 (17)	0.129 (3)	-0.0032 (13)	0.0386 (18)	0.0121 (17)
C1C	0.079 (2)	0.062 (2)	0.132 (3)	-0.0101 (16)	0.022 (2)	0.0070 (19)
C1D	0.049 (2)	0.055 (2)	0.110 (5)	0.0029 (18)	0.022 (3)	-0.003 (3)
C1E	0.131 (4)	0.075 (3)	0.150 (5)	0.044 (3)	0.015 (5)	-0.008 (4)
C1D'	0.049 (2)	0.055 (2)	0.110 (5)	0.0029 (18)	0.022 (3)	-0.003 (3)
C1E'	0.131 (4)	0.075 (3)	0.150 (5)	0.044 (3)	0.015 (5)	-0.008 (4)
N1A	0.0499 (13)	0.0448 (13)	0.136 (2)	0.0011 (10)	0.0398 (14)	0.0025 (12)
O1A	0.0495 (10)	0.0411 (10)	0.0844 (13)	0.0000(7)	0.0250 (9)	-0.0010 (8)
O1B	0.0487 (9)	0.0408 (9)	0.0736 (11)	0.0040 (7)	0.0217 (8)	0.0026 (8)
C2A	0.0604 (16)	0.0686 (18)	0.0503 (16)	-0.0084 (14)	0.0147 (13)	-0.0044 (14)
C2B	0.104 (3)	0.110 (3)	0.060 (2)	-0.039 (2)	0.0262 (18)	-0.0267 (18)
C2C	0.123 (3)	0.140 (4)	0.094 (3)	-0.022 (3)	0.049 (2)	-0.028 (2)
C2D	0.096 (3)	0.128 (3)	0.0536 (19)	-0.020 (2)	0.0041 (17)	0.0037 (18)
C2E	0.080 (3)	0.257 (6)	0.140 (4)	-0.016 (3)	0.001 (3)	0.071 (4)
N2A	0.0854 (17)	0.0863 (18)	0.0474 (14)	-0.0137 (14)	0.0083 (12)	-0.0113 (12)
O2A	0.0680 (12)	0.0646 (12)	0.0520 (10)	0.0045 (9)	0.0080 (8)	0.0042 (9)
O2B	0.0616 (11)	0.0568 (10)	0.0489 (10)	0.0036 (8)	0.0112 (8)	-0.0082 (8)
C3A	0.0567 (16)	0.0596 (17)	0.0489 (15)	-0.0058 (13)	0.0192 (12)	0.0004 (12)
C3B	0.079 (2)	0.087 (2)	0.091 (2)	-0.0163 (17)	0.0456 (18)	-0.0010 (17)
C3C	0.073 (2)	0.146 (4)	0.128 (3)	-0.014 (2)	0.025 (2)	-0.020 (3)
C3D	0.088 (2)	0.0605 (19)	0.097 (2)	-0.0171 (15)	0.0442 (19)	-0.0013 (16)
C3F	0.199 (5)	0.084 (3)	0.110 (3)	0.016 (3)	0.043 (3)	0.022 (2)
N3A	0.0642 (14)	0.0626 (14)	0.0794 (16)	-0.0077 (11)	0.0361 (12)	0.0024 (11)
O3A	0.0544 (11)	0.0472 (10)	0.0761 (12)	0.0012 (8)	0.0255 (9)	0.0055 (8)
O3B	0.0538 (10)	0.0522 (10)	0.0634 (11)	0.0003 (8)	0.0235 (8)	-0.0006 (8)
C4A	0.0468 (14)	0.0538 (15)	0.0485 (15)	-0.0024 (11)	0.0173 (11)	-0.0055 (12)
C4B	0.0665 (17)	0.0782 (19)	0.0540 (16)	0.0120 (14)	0.0167 (13)	0.0083 (14)

C4D	0 109 (3)	0 091 (2)	0.0515(18)	0.0121 (19)	0.0055(16)	-0.0182 (16)
C4C	0.171 (4)	0.113(3)	0.138 (4)	0.013 (3)	0.097 (3)	0.040 (3)
C4E	0.160 (4)	0.156 (4)	0.139 (4)	-0.081(4)	0.024 (3)	-0.062(3)
N4A	0.0682 (14)	0.0642 (14)	0.0449 (12)	0.0067 (11)	0.0104 (10)	-0.0070(10)
O4A	0.0002(11)	0.0486(10)	0.0516(10)	0.0069 (8)	0.0162 (8)	-0.0081(8)
O4B	0.0540(10)	0.0455 (9)	0.0456 (9)	0.0024 (7)	0.0132(0)	-0.0044(7)
0.12	0.00 10 (10)	0.0.000())	0.0.00())	0.0021())	0.0123 (7)	0.00011(7)
Geometric paran	neters (Å, °)					
Ti1—O4A		2.0530 (15)	C2D—	N2A	1.467	(3)
Ti1—O2A		2.0561 (16)	C2D—	C2E	1.477	(4)
Ti1—O1B		2.0562 (15)	C2D—	H2D1	0.970	
Ti1—O3B		2.0663 (16)	C2D—	H2D2	0.970	
Til—O1A		2.0851 (16)	C2E—I	H2E1	0.960	
Ti1—O4B		2.0897 (15)	C2E—I	H2E2	0.960	
Ti1—O3A		2.1013 (16)	C2E—I	H2E3	0.960	
Ti1—O2B		2.1087 (16)	C3A—	03A	1.269	(3)
C1A—O1A		1.269 (3)	C3A—	O3B	1.281	(3)
C1A—O1B		1.287 (3)	C3A—	N3A	1.339	(3)
C1A—N1A		1.326 (3)	C3B—1	N3A	1.458	(3)
C1B—N1A		1.471 (3)	C3B—	C3C	1.466	(4)
C1B—C1C		1.491 (4)	C3B—I	H3B1	0.970	
C1B—H1B1		0.970	C3B—I	H3B2	0.970	
C1B—H1B2		0.970	C3C—	H3C1	0.960	
C1C—H1C1		0.960	C3C—I	H3C2	0.960	
C1C—H1C2		0.960	C3C—	H3C3	0.960	
C1C—H1C3		0.960	C3D—	N3A	1.457	(3)
C1D—C1E		1.487 (7)	C3D—	C3F	1.501	(4)
C1D—N1A		1.511 (5)	C3D—	H3D1	0.970	
C1D—H1D1		0.970	C3D—	H3D2	0.970	
C1D—H1D2		0.970	C3F—I	43F1	0.960	
C1E—H1E1		0.960	C3F—I	13F2	0.960	
C1E—H1E2		0.960	C3F—I	1 3F3	0.960	
C1E—H1E3		0.960	C4A—	O4B	1.271	(3)
C1D'C1E'		1.468 (9)	C4A—	O4A	1.272	(3)
C1D'—N1A		1.508 (8)	C4A—	N4A	1.336	(3)
C1D'—H1DA		0.970	C4B—]	N4A	1.458	(3)
C1D'—H1DB		0.970	C4B—	C4C	1.475	(4)
C1E'—H1EA		0.960	C4B—I	H4B1	0.970	
C1E'—H1EB		0.960	C4B—]	H4B2	0.970	
C1E'—H1EC		0.960	C4D—	N4A	1.457	(3)
C2A—O2B		1.267 (3)	C4D—	C4E	1.488	(5)
C2A—O2A		1.281 (3)	C4D—	H4D1	0.970	
C2A—N2A		1.337 (3)	C4D—	H4D2	0.970	
C2B—N2A		1.477 (4)	C4C—]	H4C1	0.960	
C2B—C2C		1.481 (4)	C4C—]	H4C2	0.960	
C2B—H2B1		0.970	C4C—]	H4C3	0.960	
C2B—H2B2		0.970	C4E—I	H4E1	0.960	
C2C—H2C1		0.960	C4E—I	H4E2	0.960	

C2C—H2C2	0.960	C4E—H4E3	0.960
C2C—H2C3	0.960		
O4A—Ti1—O2A	158.13 (7)	H2C2—C2C—H2C3	109.5
O4A—Ti1—O1B	96.51 (7)	N2A—C2D—C2E	113.2 (3)
O2A—Ti1—O1B	89.14 (7)	N2A—C2D—H2D1	108.9
O4A—Ti1—O3B	89.05 (7)	C2E—C2D—H2D1	108.9
O2A—Ti1—O3B	93.58 (7)	N2A—C2D—H2D2	108.9
O1B—Ti1—O3B	157.96 (7)	C2E—C2D—H2D2	108.9
O4A—Ti1—O1A	82.73 (6)	H2D1—C2D—H2D2	107.8
O2A—Ti1—O1A	81.12 (7)	C2D—C2E—H2E1	109.5
O1B—Ti1—O1A	62.86 (6)	C2D—C2E—H2E2	109.5
O3B—Ti1—O1A	139.16 (7)	H2E1—C2E—H2E2	109.5
O4A—Ti1—O4B	62.75 (6)	C2D—C2E—H2E3	109.5
O2A—Ti1—O4B	139.12 (7)	H2E1—C2E—H2E3	109.5
O1B—Ti1—O4B	81.22 (6)	H2E2—C2E—H2E3	109.5
O3B—Ti1—O4B	82.46 (6)	C2A—N2A—C2D	120.5 (3)
O1A—Ti1—O4B	126.75 (6)	C2A—N2A—C2B	119.8 (2)
O4A—Ti1—O3A	80.97 (7)	C2D—N2A—C2B	119.6 (2)
O2A—Ti1—O3A	80.98 (7)	C2A—O2A—Ti1	91.30 (14)
O1B—Ti1—O3A	139.15 (7)	C2A—O2B—Ti1	89.34 (15)
O3B—Ti1—O3A	62.76 (6)	O3A—C3A—O3B	116.7 (2)
O1A—Ti1—O3A	76.44 (6)	O3A—C3A—N3A	121.7 (2)
O4B—Ti1—O3A	130.05 (6)	O3B—C3A—N3A	121.6 (2)
O4A—Ti1—O2B	139.16 (7)	N3A—C3B—C3C	111.3 (3)
O2A—Ti1—O2B	62.63 (7)	N3A—C3B—H3B1	109.4
O1B—Ti1—O2B	79.62 (6)	C3C—C3B—H3B1	109.4
O3B—Ti1—O2B	82.25 (7)	N3A—C3B—H3B2	109.4
O1A—Ti1—O2B	127.93 (6)	C3C—C3B—H3B2	109.4
O4B—Ti1—O2B	76.54 (6)	H3B1—C3B—H3B2	108.0
O3A—Ti1—O2B	127.58 (7)	C3B—C3C—H3C1	109.5
O1A—C1A—O1B	115.3 (2)	C3B—C3C—H3C2	109.5
O1A—C1A—N1A	123.5 (2)	НЗС1—СЗС—НЗС2	109.5
O1B—C1A—N1A	121.2 (2)	C3B—C3C—H3C3	109.5
N1A—C1B—C1C	113.5 (2)	НЗС1—СЗС—НЗСЗ	109.5
N1A—C1B—H1B1	108.9	Н3С2—С3С—Н3С3	109.5
C1C-C1B-H1B1	108.9	N3A—C3D—C3F	113.0 (3)
N1A—C1B—H1B2	108.9	N3A—C3D—H3D1	109.0
C1CC1BH1B2	108.9	C3F—C3D—H3D1	109.0
H1B1—C1B—H1B2	107.7	N3A—C3D—H3D2	109.0
C1B—C1C—H1C1	109.5	C3F—C3D—H3D2	109.0
C1B—C1C—H1C2	109.5	H3D1—C3D—H3D2	107.8
H1C1—C1C—H1C2	109.5	C3D—C3F—H3F1	109.5
C1B—C1C—H1C3	109.5	C3D—C3F—H3F2	109.5
H1C1—C1C—H1C3	109.5	H3F1—C3F—H3F2	109.5
H1C2-C1C-H1C3	109.5	C3D—C3F—H3F3	109.5
C1E—C1D—N1A	106.1 (4)	H3F1—C3F—H3F3	109.5
C1E—C1D—H1D1	110.5	H3F2—C3F—H3F3	109.5
N1A—C1D—H1D1	110.5	C3A—N3A—C3D	120.9 (2)
C1E—C1D—H1D2	110.5	C3A—N3A—C3B	119.9 (2)

N1A—C1D—H1D2	110.5	C3D—N3A—C3B	119.1 (2)
H1D1—C1D—H1D2	108.7	C3A—O3A—Ti1	89.66 (14)
C1E'—C1D'—N1A	105.9 (7)	C3A—O3B—Ti1	90.89 (14)
C1E'—C1D'—H1DA	110.6	O4B—C4A—O4A	116.1 (2)
N1A—C1D'—H1DA	110.6	O4B—C4A—N4A	121.9 (2)
C1E'—C1D'—H1DB	110.5	O4A—C4A—N4A	122.0 (2)
N1A—C1D'—H1DB	110.6	N4A—C4B—C4C	113.8 (2)
H1DA—C1D'—H1DB	108.7	N4A—C4B—H4B1	108.8
C1D'—C1E'—H1EA	109.5	C4C—C4B—H4B1	108.8
C1D'—C1E'—H1EB	109.5	N4A—C4B—H4B2	108.8
H1EA—C1E'—H1EB	109.5	C4C—C4B—H4B2	108.8
C1D'—C1E'—H1EC	109.5	H4B1—C4B—H4B2	107.7
H1EA—C1E'—H1EC	109.5	N4A—C4D—C4E	111.9 (3)
H1EB—C1E'—H1EC	109.5	N4A—C4D—H4D1	109.2
C1A—N1A—C1B	119.7 (2)	C4E—C4D—H4D1	109.2
C1A—N1A—C1D'	116.2 (4)	N4A—C4D—H4D2	109.2
C1B—N1A—C1D'	115.9 (5)	C4E—C4D—H4D2	109.2
C1A—N1A—C1D	119.3 (3)	H4D1—C4D—H4D2	107.9
C1B—N1A—C1D	120.8 (3)	C4B—C4C—H4C1	109.5
C1A—O1A—Ti1	90.24 (14)	C4B—C4C—H4C2	109.5
C1A—O1B—Ti1	91.02 (14)	H4C1-C4C-H4C2	109.5
O2B—C2A—O2A	116.4 (2)	C4B—C4C—H4C3	109.5
O2B—C2A—N2A	122.6 (3)	H4C1-C4C-H4C3	109.5
O2A—C2A—N2A	121.0 (3)	H4C2—C4C—H4C3	109.5
N2A—C2B—C2C	110.1 (3)	C4D—C4E—H4E1	109.5
N2A—C2B—H2B1	109.6	C4D—C4E—H4E2	109.5
C2CC2BH2B1	109.6	H4E1—C4E—H4E2	109.5
N2A—C2B—H2B2	109.6	C4D—C4E—H4E3	109.5
C2C—C2B—H2B2	109.6	H4E1—C4E—H4E3	109.5
H2B1—C2B—H2B2	108.2	H4E2—C4E—H4E3	109.5
C2B—C2C—H2C1	109.5	C4A—N4A—C4D	120.6 (2)
C2B—C2C—H2C2	109.5	C4A—N4A—C4B	120.9 (2)
H2C1—C2C—H2C2	109.5	C4D—N4A—C4B	118.4 (2)
C2B—C2C—H2C3	109.5	C4A—O4A—Til	91.41 (13)
H2C1—C2C—H2C3	109.5	C4A—O4B—Ti1	89.78 (13)

